Warning: mkdir(): No space left on device in /var/www/tg-me/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/sqlhub/--): Failed to open stream: No such file or directory in /var/www/tg-me/post.php on line 50
Data Science. SQL hub | Telegram Webview: sqlhub/1867 -
Telegram Group & Telegram Channel
✔️ А вот и новый DeepSeek Prover v2, модель, заточенная исключительно на математику.

🚀Масштабная архитектура на базе, которая содержит 671 млрд параметров, что в 96 раз больше, чем у предыдущей версии Prover-V1.5 (7 млрд).

Построен на базе архитектуры «смеси экспертов» (MoE), что снижает затраты на обучение и повышает эффективность решения задач.

Модель заточена на формальное доказательство теорем с помощью языка программирования Lean 4, обеспечивая 100% логическую точность.

Lean 4 — это зависимо типизированный функциональный язык программирования и интерактивное средство доказательства теорем.

Результаты:
Новая Sota( 88,9%) на MiniF2F-test.
• DeepSeek-Prover-V2 смогла доказать 49 теорем из 658.

Для тренировки использовались 8 млн синтетических примеров, созданных через рекурсивный поиск решений теорем.

🔍 Как это работает:

1) Разложение теорем: DeepSeek-V3 по prompt'у разбивает сложные задачи на подцели.

2) Формализация: Пошаговые рассуждения переводятся в доказательства на Lean 4.

3) Cold-start: Полученные цепочки рассуждений и формальные доказательства используются как начальные данные для обучения модели.

🌟 Два размера:
7 B — базовый вариант.
671 B — расширенная версия на базе DeepSeek-V3-Base.

https://huggingface.co/deepseek-ai/DeepSeek-Prover-V2-671B
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/sqlhub/1867
Create:
Last Update:

✔️ А вот и новый DeepSeek Prover v2, модель, заточенная исключительно на математику.

🚀Масштабная архитектура на базе, которая содержит 671 млрд параметров, что в 96 раз больше, чем у предыдущей версии Prover-V1.5 (7 млрд).

Построен на базе архитектуры «смеси экспертов» (MoE), что снижает затраты на обучение и повышает эффективность решения задач.

Модель заточена на формальное доказательство теорем с помощью языка программирования Lean 4, обеспечивая 100% логическую точность.

Lean 4 — это зависимо типизированный функциональный язык программирования и интерактивное средство доказательства теорем.

Результаты:
Новая Sota( 88,9%) на MiniF2F-test.
• DeepSeek-Prover-V2 смогла доказать 49 теорем из 658.

Для тренировки использовались 8 млн синтетических примеров, созданных через рекурсивный поиск решений теорем.

🔍 Как это работает:

1) Разложение теорем: DeepSeek-V3 по prompt'у разбивает сложные задачи на подцели.

2) Формализация: Пошаговые рассуждения переводятся в доказательства на Lean 4.

3) Cold-start: Полученные цепочки рассуждений и формальные доказательства используются как начальные данные для обучения модели.

🌟 Два размера:
7 B — базовый вариант.
671 B — расширенная версия на базе DeepSeek-V3-Base.

https://huggingface.co/deepseek-ai/DeepSeek-Prover-V2-671B

BY Data Science. SQL hub




Share with your friend now:
tg-me.com/sqlhub/1867

View MORE
Open in Telegram


Data Science SQL hub Telegram | DID YOU KNOW?

Date: |

Look for Channels Online

You guessed it – the internet is your friend. A good place to start looking for Telegram channels is Reddit. This is one of the biggest sites on the internet, with millions of communities, including those from Telegram.Then, you can search one of the many dedicated websites for Telegram channel searching. One of them is telegram-group.com. This website has many categories and a really simple user interface. Another great site is telegram channels.me. It has even more channels than the previous one, and an even better user experience.These are just some of the many available websites. You can look them up online if you’re not satisfied with these two. All of these sites list only public channels. If you want to join a private channel, you’ll have to ask one of its members to invite you.

The messaging service and social-media platform owes creditors roughly $700 million by the end of April, according to people briefed on the company’s plans and loan documents viewed by The Wall Street Journal. At the same time, Telegram Group Inc. must cover rising equipment and bandwidth expenses because of its rapid growth, despite going years without attempting to generate revenue.

Data Science SQL hub from it


Telegram Data Science. SQL hub
FROM USA